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Abstract The potential for overall efficiency improvements of modern hydro power turbines is a
few percent. A significant part of the losses occurs in the draft tube. To improve the efficiency by
analysing the flow in the draft tube, it is therefore necessary to do this accurately, i.e. one must
know how large the iterative and the grid errors are. This was done by comparing three different
methods to estimate errors. Four grids (122,976 to 4,592 cells) and two numerical schemes
(hybrid differencing and CCCT) were used in the comparison. To assess the iterative error, the
convergence history and the final value of the residuals were used. The grid error estimates were
based on Richardson extrapolation and least square curve fitting. Using these methods we could,
apart from estimate the error, also calculate the apparent order of the numerical schemes. The
effects of using double or single precision and changing the under relaxation factors were also
investigated. To check the grid error the pressure recovery factor was used. The iterative error
based on the pressure recovery factor was very small for all grids (of the order 10±4 percent for
the CCCT scheme and 10±10percent for the hybrid scheme). The grid error was about 10 percent
for the finest grid and the apparent order of the numerical schemes were 1.6 for CCCT (formally
second order) and 1.4 for hybrid differencing (formally first order). The conclusion is that there
are several methods available that can be used in practical simulations to estimate numerical
errors and that in this particular case, the errors were too large. The methods for estimating the
errors also allowed us to compute the necessary grid size for a target value of the grid error. For a
target value of 1 percent, the necessary grid size for this case was computed to 2 million cells.

Introduction
Proper runner design is the single most important step in the design of low
head hydraulic turbines. The current design methods for the runner have
reached a high level of refinement and make it possible to accurately predict the
performance of the runner (Sottas and Ryhming, 1993). In the quest for better
efficiency the attention is therefore today shifted towards the performance of
other parts of the turbine system that are in contact with the water. One of the
most important of these is the draft tube which is the curved diffuser that starts
immediately after the runner and ends in the `̀ tailrace'' tunnel downstream of
the power plant. In the draft tube a significant fraction of the total losses of the
turbine system occurs (Raabe, 1984). The purpose of the draft tube (Figure 1) is
to convert some of the kinetic energy of the flow from the runner into pressure
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energy and thereby increase the efficiency of the turbine. It also guides the
vertical flow immediately after the runner to a horizontal flow that can continue
downstream. The flow into the draft tube has very little swirl, or streamwise
vorticity, when the turbine is operating at best efficiency. However, it is not
uncommon for the turbine to operate at other conditions than at its best
efficiency point and in this case the flow will have a significant swirl.

The efficiency of a well designed turbine system is often as high as or higher
than 93 percent (DahlbaÈck, personal communication) which means that the
potential for improvement of the overall efficiency is of the order of a few
percent. This in its turn means that in order for a computer simulation to be
useful it must be accurate to within a few percent, at least for quantitative
predictions. For qualitative studies of the relative performance of different
design options it may be acceptable with larger errors, as long as the trends are
captured correctly. To achieve the necessary accuracy in a numerical prediction
one must have an accurate mathematical model for the turbulent flow, i.e. the
Reynolds stresses and be able to estimate the numerical errors in computations
with this model.

The present paper presents an assessment of some methods to estimate
errors in draft tube simulations objectively. The error estimates are also used to

Figure 1.
Draft tube geometry
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estimate the grid size that is necessary for accurate simulations of draft tube
flows. The accuracy of turbulence models for the swirling flow in draft tubes
will be the subject of a future paper.

The geometry of the draft tube was taken from the model turbine at the
IMHEF laboratory at EPFL (Sottas and Ryhming, 1993). The flow in this draft
tube has been analysed by several groups (Sottas and Ryhming, 1993) but none
of them have done a formal error estimation.

Proposals for error estimation in complex flows are given by several
authors: Celik and Zhang (1995); Ferziger (1993); Demuren and Wilson (1994);
Wilcox (1993); Zingg (1992); Roache (1994); Celik et al. (1993); Ferziger and Peric
(1996) and Celik and Karatekin (1997). In particular, the use of Richardson
extrapolation (Celik and Zhang, 1995; Ferziger and Peric, 1996; Celik and
Karatekin, 1997) opens up the possibility of both estimating errors and
improving the results. However, there are situations in which Richardson
extrapolation fails, e.g. when the reduction of the error due to grid refinement is
non-monotonous or when the mesh is so coarse that the numerical errors do not
decrease with decreasing mesh size in the way predicted by asymptotic
analysis. Celik and Karatekin (1997), proposed a practical method for handling
of cases with non-monotonous convergence. However, this method has only
been applied to the case of a backward facing step and remains to prove that
the method is valid in a general case. In the cases when Richardson
extrapolation fails it is still useful as a warning that the solution needs further
inspection before it can be trusted (Celik and Zhang, 1995).

The use of Richardson extrapolation has been thoroughly investigated for
laminar flow (Ferziger, 1996) and has been found to give accurate results if the
grid is sufficiently fine. It has also been applied to the two-dimensional flow
over a backward facing step (Celik and Karatekin, 1997) where the method also
gave an accurate extrapolation. However, this does not automatically imply
that the method is useful for 3D turbulent flow with swirl in complex geometry.
It is therefore the purpose of this paper to improve the confidence in the
proposed methods for engineering type calculations by systematically
investigating the flow in the draft tube geometry.

The use of wall function boundary conditions, which we have used in all
computations presented below, gives rise to specific problems. One difficulty is
that the grid refinement cannot be done all the way to the wall since the grid
point closest to the wall has to be in the logarithmic region at y+ > 30. However,
if the near wall grid points are kept at a constant distance from the wall it is
expected that Richardson extrapolation can still be used (Celik and Zhang,
1995). The advantage with wall functions is that the number of grid points can
be reduced while the resolution of the internal flow is the same as with low
Reynolds number versions of the turbulence models. An additional advantage
with wall functions is that the convergence is better than with low Reynolds
number modifications of the turbulence equations (Chen and Patel, 1988). The
drawback is that the near wall behaviour of real flows sometimes does not
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conform to the law of the wall which is the basis for wall functions. However,
whether the law of the wall is valid or not for draft tube flows is the subject of
an ongoing study in our group and will be presented in a future paper.

The paper is organised with a summary of computational details in the next
section followed by a discussion of iterative convergence and grid convergence.
Finally, conclusions about the proper way to estimate errors are drawn based
on the present results.

Computational details
A commercial code (AEA-CFX) was used for solving the draft tube flow (AEA
Technology, 1995). It is a finite-volume based code using a structured non-
staggered multi-block grid. The data transfer between blocks is done by the
introduction of dummy cells outside the boundary of each block. This makes
each block overlap a neighbouring block. The interior values in one block
become the boundary conditions for the neighbour block and vice versa (AEA
Technology, 1995).

All terms in all equations were discretised using second-order centred
differencing (CDS) apart from the convective terms. The convective terms in
the momentum equations were discretised using higher-order upwind
differencing (HUW) (AEA Technology, 1995), which is a second-order method.

For the k and " equations two different differencing schemes were tested,
either hybrid differencing (HDS) or curvature compensated convective
transport (CCCT). Hybrid differencing is formally only a first order scheme but
it is widely used for engineering calculations due to its positive impact on
convergence. It is therefore of interest to see what the penalty for the use of this
method in the k and " equations is. For the comparison we chose CCCT because
it is second order and boundedness preserving (Gaskell and Lau, 1987).

For the pressure correction equation the formally second order accurate
central differencing scheme (CDS) was used.

The expected overall behaviour of the numerical scheme is second order
when CCCT is used in the k and " equations. When hybrid differencing is used
the expected overall behaviour is somewhere between first and second order.

The turbulence was modelled using the standard k-" model and wall
function boundary conditions although it is well known that this model is
unable to represent all details of the flow accurately (Hanjalic, 1994). The
argument for the use of this simple model in the present paper was that the
main interest was to investigate methods for error estimation and that the k-"
model was believed to be sufficiently complex to give rise to similar numerical
difficulties as a more complex model would do.

Six equations had to be solved: u, v and w-velocity, pressure correction,
turbulent kinetic energy k and turbulent dissipation ". The SIMPLEC
algorithm was used for the pressure-velocity coupling (Van Doormal and
Raithby, 1984). Different equation solvers, under-relaxation factors and
differencing schemes were used depending on the equation (see Table I). The
under-relaxation factors used are the default values for AEA-CFX (AEA
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Technology, 1995) and these are believed to be sufficiently large to avoid
unconverged solutions that appear to be converged due to heavy under-
relaxation (more about this below).

Boundary conditions
The velocity and turbulent quantities were set at the inlet, the pressure and
normal derivatives at the outlet and wall functions were used at the wall. The
wall cell was for all mesh sizes chosen so that the outer control volume
boundary was at y+�15, to improve the accuracy of the wall function (Wilcox,
1993). The implementation of wall functions in AEA-CFX is done by solving
the equation for the turbulent kinetic energy in the control volume immediately
adjacent to the wall. The dissipation can then be calculated using wall
functions. The velocity is finally obtained from the law of the wall by
calculating the wall shear stress �w and the wall coordinate y+. The tangential
and normal velocities (Figure 2) were set according to measured values along
one radius (Sottas and Ryhming, 1993) assuming axisymmetry at the inlet
(Sottas and Ryhming, 1993). To apply these values to grid nodes at the inlet,
linear interpolation was performed to the nodes. The turbulence quantities k
and " were set to constant values (AEA Technology, 1995) at the inlet
calculated from the formulas

kinl ÿ cp1u
2
inl � 0:01230 �1�

"inl � k3=2

cp2D
� 0:01131 �2�

where uinl is the mean inlet velocity, cp1 and cp2 are empirical constants (AEA
Technology, 1995) with values 0.002 and 0.3 respectively, and D is the outlet
diameter of the runner. This means that a turbulent length scale of

C�
k3=2

"inl

� 0:025 � D �3�

Table I.
Differencing schemes,
under-relaxation factors
and solver methods for
the linearised equations
used in the
computations

Equation Differencing scheme Under relax. factor Linear solver

u velocity HUW 0.65 BLST
v velocity HUW 0.65 BLST
w velocity HUW 0.65 BLST
pressure CDS 1.00 ICCG
k HDS, CCCT 0.70 LRLX
" HDS, CCCT 0.70 LRLX

Note:
BLST = block stone, ICCG = preconditioned conjugate gradients, LRLX = line relaxation
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or 2.5 percent of the runner outlet diameter and a turbulence intensity of���������
kinl

1
2 u2

inl

s
� 6:3% �4�

are assumed.
At the outlet the pressure was set to a constant value and for all other

variables a zero value of the first order derivatives at the outlet was adopted.
The flow was therefore supposed to be fully developed at the outlet.

Computational grids
The draft tube calculations were performed on four different grids: a fine grid
(grid 1), an intermediate grid (grid 3) having twice the grid cell size, a coarse
grid (grid 4) having three times the grid cell size compared to the finest grid,
and finally a grid between the fine and the intermediate (grid 2). The relevant
numbers are listed in Table II.

Figure 2.
Inlet swirling velocity

distribution

Table II.
Grid and relative cell

sizes

Grid no. No. of grid points Cell size (equation (18))

1 122,976 1
2 79,079 1.16
3 15,372 2
4 4,592 2.99
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The grids were constructed with 40 blocks to properly resolve the sharp
corners in the bend of the IMHEF (Sottas and Ryhming, 1993) model draft tube
(see Figure 1). The circular cross sections were subdivided into five regions,
with a central quadratic region, to avoid the degenerated control volumes at the
outer circumference that appear when a mesh with only one region is used for a
circular surface.

Iterative convergence
The iterative convergence error can be defined as the difference between the
current and the exact solution to the discretised equations on the same grid
(Demuren and Wilson, 1994). This error is difficult to define with a single
global value. A common method to estimate the error is to utilise the residuals
when the current solution is substituted into the discrete equations. One then
often sums the absolute values of the residuals in all cells (the L1 norm)
(Ferziger and Peric, 1996) to get a global measure on the error. This value is
called the absolute residual source sum or, colloquially, the residual.

A number of methods are available for estimating the iterative convergence
error (Ferziger and Peric, 1996). They are all based on the assumption that a
non-linear system of equations have an almost linear behaviour close to the
converged solution. The task is then to estimate the spectral radius of the
iteration matrix from the solution at different iteration levels. The
underpinning mathematics of the method is flawless but the implementation in
practice involves fine tuning of a few algorithmic parameters. We have
therefore chosen to take a different route (described below) that involves no fine
tuning but which involves more iterations.

The absolute residual source sum in the pressure correction equation can be
physically interpreted as an artificial mass source. A small mass source
corresponds to a solution that satisfies the continuity equation well. The mass
source residual can be normalised with the total mass flow into the
computational domain so that an objective measure of the relative error can be
obtained.

For the other equations it is difficult to define an objective normalisation
factor. Hence it is difficult to determine whether the solution has converged for
all equations by reference only to the value of the absolute residual source
sums. We have therefore adopted the procedure to inspect the whole
convergence history in addition to the level of the residual source sum. Figure 3
shows a typical residual plot for a computation of the draft tube in Figure 1.

We have chosen to take the `̀ knee'' (indicated with an arrow in Figure 3) as a
sign of convergence if at the same time the value of the residual source sum has
dropped several orders of magnitude compared to its value after the second
iteration. It is believed that the final value of the residual source sum depends
on the discretisation scheme, the amount of under relaxation and on the
machine precision. This assumption is made more credible by the observation
that a change from double to single precision leads to an increased value of the
mass residuals from 3.95*10±4 to 6.51*10±1 for grid 2 and the CCCT scheme (all
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other computations were done in double precision). A reduction of under
relaxation factor in all equations with 10 percent for grid 2 and the CCCT
scheme leads to a reduction of the mass residual from 3.95�10±4 to 3.40�10±5. It is
also shown below how a change of differencing scheme affects the final level of
the residuals (see Table III).

However, even if the `̀ knee'' criterion is satisfied convergence is not
guaranteed (but very likely). To avoid `̀ false convergence'' we also monitored
the values of all variables at a monitor point where the solution was believed to

ITERATIONS

RESIDUALS

1.0E+05

1.0E+03

1.0E+01

1.0E–01

1.0E–03

1.0E–05

1.0E–07

1.0E–09

1.0E–11

1.0E–13

1.0E–15

1.0E–17

1.0E–19

1.0E–21
0.0E–00 1.0E+04

Key
EPSILON
K
MASS
W VELOCITY
V VELOCITY
U VELOCITY

Figure 3.
Residual plot for all
equations for grid 1

(HDS, 122,976 cells). The
arrow indicates the

`̀ knee'' that is used as a
sign of convergence.

Notice that more than
5,000 iterations are
necessary to reach

convergence with this
grid

Table III.
Mass source residuals

for the four different
grids using hybrid

differencing or CCCT

Grid
Absolute mass
source residual

Normalised mass
source residual

Residual reduction
factor

1 HDS 1.28*10±9 3.44*10±10% 1.6*1012

2 HDS 1.25*10±9 3.36*10±10% 1.4*1012

3 HDS 1.24*10±9 3.33*10±10% 5.8*1011

4 HDS 1.38*10±9 3.71*10±10% 5.8*1011

1 CCCT 2.16*10±4 5.81*10±5% 9.2*106

2 CCCT 3.95*10±4 1.06*10±4% 4.5*106

3 CCCT 7.08*10±4 1.90*10±4% 1.0*106

4 CCCT 1.87*10±3 5.03*10±4% 4.3*105

Note: The total mass flux into the draft tube was 372 kg/s. The residual reduction factor is
the ratio of the residuals after the first and the last iteration
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have strong gradients. When these monitor values stayed constant in at least
six digits for several iterations at the same time as the previous convergence
criterion was satisfied we considered the solution to be fully converged.

The resulting mass source residual when all rules above have been followed
is summarised for the four computational grids in Table III. Notice that the
normalised mass source residual is typically less than 10±9 for HDS. For the
CCCT scheme the mass source residual after convergence is significantly
higher. However, the continuity error is still negligible in comparison to the
total flow into the computational domain.

The underlying reason for the differences in the final residuals between HDS
and CCCT is outside the scope of the present paper. However, the numerical
experiments described above indicate that the final level of the residuals are
due to round off and cancellation errors. It is therefore likely that the difference
is due to the detailed differences in the floating point operations that yields the
converged (within the machine precision) solution.

Grid convergence
In this section three different error estimation methods are described. They will
later be applied to the computational results.

Richardson extrapolation
Richardson extrapolation seems to be the most widely used method to estimate
the grid convergence error. For example Ferziger (1993); Demuren and Wilson
(1994); Wilcox (1993); Zingg (1992); Roache (1994) and Ferziger and Peric (1996)
all use Richardson extrapolation to estimate the error in the solution. One
interesting approach is proposed by Roache (1994) who introduces the Grid
Convergence Index (GCI), which is based on Richardson extrapolation, to report
grid refinement studies in CFD. The idea behind GCI is to relate the error for
any grid refinement using any order of the method, to that for a grid doubling
using a second order method, i.e. Roache (1994) suggests that grid doubling and
second order methods should be the `̀ standard'' method to compare with. To
use the GCI one has to perform two calculations, one on a fine grid and one on a
coarse grid. The GCI is defined as (Roache, 1994):

GCI � 3j"j
rp ÿ 1

�5�

" � f2 ÿ f1

f1
�6�

r � h2

h1
�7�

where r is the grid cell ratio between coarse (h2) and fine grid (h1), p is the order
of the method used, h is the cell size, " is the relative difference between the
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grids f1 and f2, the solutions from the fine and coarse grid, respectively. One
interesting thing about the GCI, because it is based on Richardson
extrapolation, is that it is applicable not only to grid values but also to solution
functionals like efficiency and to plotted curves. A problem with GCI is that it
becomes singular if the value f1 is zero.

Another approach is presented by Celik and Zhang (1995). The exact relative
grid convergence error is defined as:

er � �exact ÿ �h

�exact
�8�

where �exact is the exact value and �h is the value from a grid having grid cell
size h. Because the exact value is not known one can use an extrapolated value
as an approximation (Celik and Zhang, 1995), and define an approximate
relative error.

er;approx � �extrapolated ÿ �h

�extrapolated
�9�

By using Richardson extrapolation or curve fitting it is possible to calculate
�extrapolated. The extrapolated value was first obtained as follows (Celik and
Zhang, 1995). The error can, if the mesh is sufficiently fine, be expressed as:

"h � �exact ÿ �h � a1h� a2h
2 � a3h

3 � . . . �10�
where h is the grid cell size and ai are coefficients which can be functions of the
coordinates (depending on the numerical scheme some of them might be zero)
but do not depend on h in the asymptotic range. The error probably depends on
h in a complex way if h is large due to the non-linearity of the governing
equations. In that case many terms must be included in equation (10), but for
sufficiently small h only the leading term matters:

"�h � �exact ÿ ��h � C��h�p �11�
where � is the grid refinement factor (the grid cell ratio between the finest grid
and the present grid), p is the order of the method and C is a coefficient that can
be a function of the coordinates. By using equation (11) for three different grid
refinement factors �1 (=1 in most cases), �2 and �3, the following three
equations for p, the extrapolated value and C can be derived:

��2h ÿ ��3h

��1h ÿ ��2h

� �
p
3 ÿ �p

2

�p
2 ÿ �p

1

�12�

�extrapolated � �
p
2�h ÿ ��2h

�p
2 ÿ 1

�13�
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C � �extrapolated ÿ �h

hp
�14�

By first using equation (12) to check that the order p of the method is close to
the expected value and then equation (13) (Richardson extrapolation) to get an
approximation of the exact value, this will finally, by the use of equation (9),
give an estimate of the grid convergence error.

Although equations (5) and (9) combined with equation (13) are derived in
different ways, they are very similar. By rewriting equations (5) and (9) as:

Equation (5) �) GCI � 3

rp ÿ 1

�rh ÿ �h

�h

�15�

Equations (9) and (13) �) er � �h ÿ �ah

�p�h ÿ �ah

�16�

it is obvious that the two error estimates are normalised differences between
the solutions on the two finest grids. The best estimate of the actual grid
convergence error is probably obtained with equation (16). The GCI equation
(15) is more conservative by having a `̀ factor of safety''. Notice the difference
between r and � where r is the ratio between two adjacent grids in a sequence,
whereas � is always referred to the finest grid in the sequence.

The cell size ratio indicator (� or r, cf. equations (15) and (16)) was calculated
using

c � N1

N2

� �1=3

�17�

where N1 is the number of control volumes for the fine grid and N2 for the
coarse grid (cf. Table II). This definition was chosen to make it possible to
characterise the cell size with a single parameter so that equation (16) could be
used. However, for this to be justified it is important that the distribution of
grid points is geometrically similar (or almost) for all grids.

The error estimator used (equation (16)) also requires (because of the
assumptions connected to Richardson extrapolation (Roache, 1994)) that the
solutions are in the asymptotic range, i.e. the error must have the same
variation between the grids as predicted by a Taylor-series analysis of the
numerical scheme. Hence, a separate check should always be done that this is
the case.

Curve fitting
The second method to obtain �extrapolated was least square curve fitting. The
function used for the curve fitting was assumed to depend on the cell size in the
same way as indicated by an asymptotic analysis of the discretisation scheme:

� � �extrapolated � bhp �18�
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where p is the order of the numerical scheme (for a second order scheme p = 2).
The values from several computational grids are used together with a least
squares fit to obtain values of the constants in equation (18). The resulting
�extrapolated from the curve fitting was used in equation (9) to estimate the grid
convergence error.

Grid convergence: results
The pressure recovery factor was used to check grid convergence. It is defined
as (Agouzoul, 1990),

Cpr � Pout ÿ Pin

1
2 ��u2

m;in � w2
m;in�

�19�

where Pout is the outlet static pressure (the outlet boundary condition was
constant pressure), � is the density, um;in is the mean inlet velocity and wm;in is
the mean inlet swirl velocity. The mean inlet static pressure, Pin, is a direct
result of the whole field solution for all variables. The pressure recovery factor
indicates the degree of conversion of kinetic energy into static pressure
(Agouzoul et al., 1990) where a higher value means higher efficiency for the
draft tube. The exact value of the pressure recovery factor depends on the
whole field solution and can be seen as an integral property of the solution.

The pressure recovery factor differed greatly between grid 4 and the other
grids, indicating that grid 4 is too coarse. Indeed, detailed inspection of the
whole field solution (see Figure 4) revealed qualitative differences between the
solution on grid 4 and the other solutions. Notice the absence of pressure
extrema at the corners of the outer edge of the elbow in Figure 4 for the coarsest
grid. The pressure recovery factor for the various grids and two different
schemes (hybrid and CCCT) is shown in Table IV.

Notice that the difference between the results in Table IV with the two
differencing schemes is in the third significant digit. However, a calculation of
the apparent order of the numerical scheme (equation (12)) shows that the
CCCT scheme has an order of about 1.6 while the hybrid scheme has an
apparent order of 1.4 (see Table V). A calculation based on the coarsest grid
yields a much lower order for both schemes, which indicates that the coarse
grid results cannot be used for Richardson extrapolation.

The expected apparent order of the CCCT scheme is 2 (compared to the
calculated value of 1.63 for the finest three grids), hence, it is likely that the
grids are still slightly too coarse to yield an error that scales with the mesh size
in the asymptotic way. An error estimate can still be computed but must be
regarded as an approximation only. The computed error estimates for the
pressure recovery factor (equation (19)) are shown in Table VI.

Based on estimate 1 in Table VI it appears that the relative error in the
computed value of the pressure recovery factor with the finest grid is about 10
percent. This is a surprisingly large error since the finest grid had 122,976 cells.
However, it should be kept in mind that the flow in the elbow draft tube takes
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Table IV.
Pressure recovery
factor for grid 1-4

Grid no. Cpr/hybrid Cpr/CCCT

1 0.4051 0.4044
2 0.4155 0.4146
3 0.4808 0.4832
4 0.5609 0.5621

4592 15372

79079
122976

Figure 4.
Pressure contours in the
symmetry plane for all
grids. Notice the lack of
local pressure extrema
at the outer edge of the
elbow for the coarsest
grid

Table V.
Apparent order from
equation (12) of the
numerical scheme for
different grid
combinations

Grid combination Order p/hybrid Order p/CCCT

1,2,3 1.44 1.63
1,3,4 1.12 1.02
2,3,4 1.08 0.95

Table VI.
Estimated relative error
in the pressure
recovery factor with
three different error
estimation methods

Method
Estimate 1, equations

(9) (12) (13)
Estimate 2, GCI

equation (5)

Estimate 3 equations
(9) (18), grid 1,2,3,

using p = 2

Fine grid/hybrid 0.12 0.33 0.063
Fine grid/CCCT 0.10 0.28 0.067



Numerical
accuracy for the

flow field

485

place in a very complicated geometry (sharp corners in the bend) and exhibits a
very complex behaviour (swirl, streamline curvature and separation). The
complete resolution of all small scale features of the mean flow will require a
very large number of grid points.

Having seen that 122,976 cells are too few to resolve all features of the flow
one may ask how fine the mesh should be to yield an acceptably small error. If
the error is set to a target value, of 1 percent, equation (19) can be used to
estimate the necessary grid refinement to about 2 million cells. This grid size
was too fine to allow us to compute the flow with our available computer
resources. However, ongoing work on a more powerful parallel computer will
allow us to check this in the near future.

Conclusions
This paper presents an assessment of methods to estimate numerical errors in
complex three-dimensional flows. The methods can be divided into two parts,
estimates of iterative convergence error and estimates of grid convergence
errors.

Iterative convergence error was estimated by inspection of plots of the
absolute residual source sums for all equations (see Figure 3). As a sign of
convergence it was required that the residual curves should exhibit an initial
significant decrease by several orders of magnitude followed by a relatively
constant level of the residual sums. Numerical experiments with variations of
solution parameters and differencing scheme indicate that the resulting
solution is converged within machine precision.

The proposed iterative convergence error estimate is more conservative than
the methods based on estimates of the spectral radius of the iteration matrix
(Ferziger and Peric, 1996). The present method is also much easier to
implement but the price for the convenience is that extra work has to be spent
to get to a converged solution.

The grid convergence error was estimated using Richardson extrapolation
and curve fitting. To use Richardson extrapolation as an error estimator at
least three grids are necessary so that a reliable test of whether the solutions
are in the asymptotic range can be made. Applied to the pressure recovery
factor this resulted in a grid error of about 10 percent for the finest grid. The
apparent order of the scheme was in this case 1.6 instead of the expected value
of 2.0. This indicates that the sequence of grids was too coarse to be considered
as being in the asymptotic region where the grid error is proportional to the
mesh size to some power only. An estimate of the number of cells that would
give an error of less than 1 percent in the pressure recovery factor shows that
the grid should have at least 2 million cells.

Although the computations appear to have been done with a mesh that was
too coarse to be ideally suited for the Richardson extrapolation based error
estimators it appears that the methods are useful in practical situations. If the
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apparent order of the scheme is not close to the theoretical value one should
regard the error estimate with caution. However, the results can still be used to
compute the necessary grid refinement that would give an acceptable error.
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